Proposition 5.7. Consider a motion ¢(x,t) with corresponding spatial velocity field
v(x,t). Let the spatial vector field h(x,t) satisfy
D

—ohix, 1) =T(x.h(x 1), x €, h(X,0)=ho(X) X€Q(=),  (56)

where I' = (I';;) = <g;f; (X,t)) is the velocity gradient tensor. Then
h(x,t)|y—gx.) = DO(X, )ho(X) = F(X, t)ho(X), (5.7)

where F(X,t) = Dp(X,t) = Vx (X, t) is the deformation gradient.

Proof. We first show that h(x,t) defined by

h(x, )] = F(X,t)ho(X)

x=¢p(X,t)

satisfies the given equation:

(e

To see that this is the unique solution, notice that if fl(x,t) is another solution then
h(¢(X,t),t) satisfies the same first order system of ordinary differential equations in ¢
(viewing X as a parameter) and the same initial conditions. Since solutions to such an
initial value problem are unique, the result follows. O

=

7F(Xat)h0(X) = F(th)‘x:q&(x,t) F(th)hO(X) = F(Xat)

= ot (X, t) ‘x:(ﬁ(X,t) .

x=¢p(X,t)

Corollary 5.8. (Cauchy’s Theorem on transport of vorticity) Suppose further that thet
the welocity field v(x,t) satisfies the incompressible Euler Equations, then the vorticity
satisfies

W(X,t)|x:¢(x,t) =Vxo(X, t)wo(X) = F(X,t)wo(X), F(X,t) = Dop(X,t). (5.8)
Proof. This follows from Sheet 4 Q3 since the vorticity satisfies

D
(1) = (@.9)v(x, 1) = Dlx, w(x, 1)

O]

Theorem 5.9. (Helmholtz result on transport of vortex lines.) For solutions of the in-
compressible Euler-Equations, vortex lines are transported by the flow.

Proof.

Let ¢ : Q x [0,7] — R? be a motion. Let y(s), y : [a,b] — € be a vortex line in
the fluid at time ¢ = 0. Then, by time ¢, this curve has deformed to become the curve

y(s) = ¢(y(s),t), s € [a,b]. Since

dy(s) _
ds

dy(s)
X Olx=ys) ~ g5

(
De(y(s), t)wo(y(s))
w(¢(y(s) t),t), (using Corollary 5.8),

= w(y(s),1)

it follows that y(s) is also a vortex line.
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5.4 Steady irrotational flow in 2D, Complex Velocity

In this section we write (71, 72) = (7,y) € R? and consider planar velocity fields of the
form
u(z,y)
v(z,y)=| olzy) |, (5.9)
0

where u, v are sufficiently smooth functions.

Given a 2D velocity field, we form the complex velocity function
W(z) = u(z,y) — iv(z,y) for z =z + iy € C. (5.10)

Now consider the complex contour integral around the closed simple contour C' parametrised
by s € [a, b].

b b b
d d d d d d
/CW(z) dz:/a (u—iv) (é%—zi{) ds:/a ud—i—i-vd—i ds—i—z'/a ud—‘q;—vd—i ds, (5.11)

hence the real part of the integral is the circulation around the contour C' and the imaginary

dy
part is related to the flow perpendicular to C. (Note that < ds ) is normal to the
T ds
contour C. ’
If we suppose that the flow is incompressible, then
Oou Ov ou 0
0=Vv=—+—=0=>—=—(— 5.12
VT o + y or 0Oy (=v) ( )
and if the flow is irrotational, then
0
ou 0
0=V xv= 0 = —=——(—v 5.13
o o 9y~ oz (—v) (5.13)
ox oy

and so the real and imaginary parts of the complex velocity satisfy the Cauchy-Riemann
equations of complex analysis. Hence, W(z) is a complex analytic function on its domain
of definition.

Remark 5.10 (Velocity potential). If the flow is irrotational, then V x v =0 and so

9¢
v(z,y) = %—‘jj : (5.14)
0
where ¢(x,y) is the velocity potential.
If we suppose further that the flow is incompressible, then
o ¢
0=Vwv=—_4+_T=A 5.15
VT 922 Oy? 2 (5.15)

and so ¢ is harmonic.



Remark 5.11 (Stream function). Notice that if we do not assume that the flow is ir-
rotational, then by a result from vector calculus, the incompressibility condition V.v = 0
implies the existence of a scalar function v called the stream function such that

0 Py
V x 0 = — 1y
P 0
and hence
Py 0
Vxv=Vx| —¢, | = 0
0 —AyY

18 the corresponding vorticity. In particular, if the flow is also irrotational, then v 1is
harmonic.

Consider flow in a 2D domain external to D (corresponding to a body immersed in the

flow). Consider a 2D velocity field and form the complex function If we paramatrise the
boundary of D as (z(s),y(s)) using arc length s € [a, b] as the parameter, then the vector

field
da
< & ) (5.16)
ds
is the unit tangent vector to D and hence

(%) -

is the outward pointing normal unit vector to D on 9D.

On the boundary of the body D there is no normal component of velocity and so

dy
0=v.an= < w,y) > . < U ) : (5.18)
U(LU7 y) ~ds
Now consider the complex contour integral

/CW(Z) t= | wia - /ab(u —iv) (fg + ifi) ds (5.19)

b b
= ud—x + v@ ds + 1/ u@ — vd—x ds = Circulation around C.
. ds ds ., ds ds



